• Key to resilient energy-efficient AI/mac

    From ScienceDaily@1:317/3 to All on Mon Nov 1 21:30:36 2021
    Key to resilient energy-efficient AI/machine learning may reside in
    human brain

    Date:
    November 1, 2021
    Source:
    Penn State
    Summary:
    A clearer understanding of how a type of brain cell known as
    astrocytes function and can be emulated in the physics of hardware
    devices, may result in artificial intelligence (AI) and machine
    learning that autonomously self-repairs and consumes much less
    energy than the technologies currently do, according to researchers.



    FULL STORY ==========================================================================
    A clearer understanding of how a type of brain cell known as astrocytes function and can be emulated in the physics of hardware devices,
    may result in artificial intelligence (AI) and machine learning that autonomously self- repairs and consumes much less energy than the
    technologies currently do, according to a team of Penn State researchers.


    ========================================================================== Astrocytes are named for their star shape and are a type of glial cell,
    which are support cells for neurons in the brain. They play a crucial
    role in brain functions such as memory, learning, self-repair and synchronization.

    "This project stemmed from recent observations in computational
    neuroscience, as there has been a lot of effort and understanding of how
    the brain works and people are trying to revise the model of simplistic neuron-synapse connections," said Abhronil Sengupta, assistant professor
    of electrical engineering and computer science. "It turns out there
    is a third component in the brain, the astrocytes, which constitutes a significant section of the cells in the brain, but its role in machine
    learning and neuroscience has kind of been overlooked." At the same time,
    the AI and machine learning fields are experiencing a boom.

    According to the analytics firm Burning Glass Technologies, demand for AI
    and machine learning skills is expected to increase by a compound growth
    rate of 71% by 2025. However, AI and machine learning faces a challenge
    as the use of these technologies increase -- they use a lot of energy.

    "An often-underestimated issue of AI and machine learning is the amount of power consumption of these systems," Sengupta said. "A few years back,
    for instance, IBM tried to simulate the brain activity of a cat, and
    in doing so ended up consuming around a few megawatts of power. And
    if we were to just extend this number to simulate brain activity
    of a human being on the best possible supercomputer we have today,
    the power consumption would be even higher than megawatts." All this
    power usage is due to the complex dance of switches, semiconductors
    and other mechanical and electrical processes that happens in computer processing, which greatly increases when the processes are as complex as
    what AI and machine learning demand. A potential solution is neuromorphic computing, which is computing that mimics brain functions. Neuromorphic computing is of interest to researchers because the human brain has
    evolved to use much less energy for its processes than do a computer,
    so mimicking those functions would make AI and machine learning a more energy-efficient process.



    ========================================================================== Another brain function that holds potential for neuromorphic computing
    is how the brain can self-repair damaged neurons and synapses.

    "Astrocytes play a very crucial role in self-repairing the brain,"
    Sengupta said. "When we try to come up with these new device structures,
    we try to form a prototype artificial neuromorphic hardware, these
    are characterized by a lot of hardware-level faults. So perhaps we can
    draw insights from computational neuroscience based on how astrocyte
    glial cells are causing self-repair in the brain and use those concepts
    to possibly cause self-repair of neuromorphic hardware to repair these
    faults." Sengupta's lab primarily works with spintronic devices, a form
    of electronics that process information via spinning electrons. The
    researchers examine the devices' magnetic structures and how to make
    them neuromorphic by mimicking various neural synaptic functions of the
    brain in the intrinsic physics of the devices.

    This research was part of a study published in January in Frontiers in Neuroscience. That research, in turn, resulted in the study recently
    published in the same journal.

    "When we started working on the aspects of self-repair in the previous
    study, we realized that astrocytes also contribute to temporal information binding," Sengupta said.



    ========================================================================== Temporal information binding is how the brain can make sense of relations between separate events happening at separate times, and making sense
    of these events as a sequence, which is an important function of AI and
    machine learning.

    "It turns out that the magnetic structures we were working with in
    the prior study can be synchronized together through various coupling mechanisms, and we wanted to explore how you can have these synchronized magnetic devices mimic astrocyte-induced phase coupling, going beyond
    prior work on solely neuro- synaptic devices," Sengupta said. "We want the intrinsic physics of the devices to mimic the astrocyte phase coupling
    that you have in the brain." To better understand how this might be
    achieved, the researchers developed neuroscience models, including those
    of astrocytes, to understand what aspects of astrocyte functions would
    be most relevant for their research. They also developed theoretical
    modeling of the potential spintronic devices.

    "We needed to understand the device physics and that involved a lot of theoretical modeling of the devices, and then we looked into how we could develop an end-to-end, cross-disciplinary modeling framework including everything from neuroscience models to algorithms to device physics,"
    Sengupta said.

    Creating such energy-efficient and fault-resilient "astromorphic
    computing" could open the door for more sophisticated AI and machine
    learning work to be done on power-constrained devices such as smartphones.

    "AI and machine learning is revolutionizing the world around us every day,
    you see it from your smartphones recognizing pictures of your friends
    and family, to machine learning's huge impact on medical diagnosis
    for different kinds of diseases," Sengupta said. "At the same time,
    studying astrocytes for the type of self-repair and synchronization functionalities they can enable in neuromorphic computing is really in
    its infancy. There's a lot of potential opportunities with these kinds
    of components." Along with Sengupta, researchers in the first paper
    released in January, "On the Self-Repair Role of Astrocytes in STDP
    Enabled Unsupervised SNNs," include Mehul Rastogi, former research intern
    in the Neuromorphic Computing Lab; Sen Lu, graduate research assistant
    in computer science; and Nafiul Islam, graduate research assistant
    in electrical engineering. Along with Sengupta, researchers in the
    paper released in October, "Emulation of Astrocyte Induced Neural Phase Synchrony in Spin-Orbit Torque Oscillator Neurons," include Umang Garg,
    who was a research intern at Penn State during the study, and Kezhou Yang, doctoral candidate in material science.

    The National Science Foundation supported this work through the Early
    Concept Grant for Exploratory Research program which is specifically
    targeted for interdisciplinary high-risk, high-payoff projects with a transformative scope.

    ========================================================================== Story Source: Materials provided by Penn_State. Original written by
    Jamie C. Oberdick. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Umang Garg, Kezhou Yang, Abhronil Sengupta. Emulation of Astrocyte
    Induced Neural Phase Synchrony in Spin-Orbit Torque Oscillator
    Neurons.

    Frontiers in Neuroscience, 2021; 15 DOI: 10.3389/fnins.2021.699632 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/11/211101104858.htm

    --- up 8 weeks, 4 days, 8 hours, 25 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)