• ALMA scientists detect signs of water in

    From ScienceDaily@1:317/3 to All on Wed Nov 3 21:30:52 2021
    ALMA scientists detect signs of water in a galaxy far, far away
    New study marks most distant detection of required element for life as we
    know it in a regular star-forming galaxy

    Date:
    November 3, 2021
    Source:
    National Radio Astronomy Observatory
    Summary:
    Water has been detected in the most massive galaxy in the early
    Universe.

    Scientists studying SPT0311-58 found H20, along with carbon monoxide
    in the galaxy, which is located nearly 12.88 billion light years
    from Earth.

    Detection of these two molecules in abundance suggests that the
    molecular Universe was going strong shortly after the elements
    were forged in early stars. The new research comprises the most
    detailed study of molecular gas content of a galaxy in the early
    Universe to date and the most distant detection of H20 in a regular
    star-forming galaxy.



    FULL STORY ========================================================================== Water has been detected in the most massive galaxy in the early
    Universe, according to new observations from the Atacama Large Millimeter/submillimeter Array (ALMA). Scientists studying SPT0311-58
    found H20, along with carbon monoxide in the galaxy, which is located
    nearly 12.88 billion light years from Earth. Detection of these two
    molecules in abundance suggests that the molecular Universe was going
    strong shortly after the elements were forged in early stars. The new
    research comprises the most detailed study of molecular gas content of
    a galaxy in the early Universe to date and the most distant detection
    of H20 in a regular star-forming galaxy. The research is published in
    The Astrophysical Journal.


    ========================================================================== SPT0311-58 is actually made up of two galaxies, and was first seen
    by ALMA scientists in 2017 at its location, or time, in the Epoch of Reionization. This epoch occurred at a time when the Universe was just
    780 million years old - - roughly 5-percent of its current age -- and
    the first stars and galaxies were being born. Scientists believe that
    the two galaxies may be merging, and that their rapid star formation
    is not only using up their gas, or star-forming fuel, but that it may eventually evolve the pair into massive elliptical galaxies like those
    seen in the Local Universe.

    "Using high-resolution ALMA observations of molecular gas in the pair
    of galaxies known collectively as SPT0311-58 we detected both water and
    carbon monoxide molecules in the larger of the two galaxies. Oxygen and
    carbon, in particular, are first-generation elements, and in the molecular forms of carbon monoxide and water, they are critical to life as we know
    it," said Sreevani Jarugula, an astronomer at the University of Illinois
    and the principal investigator on the new research. "This galaxy is the
    most massive galaxy currently known at high redshift, or the time when
    the Universe was still very young. It has more gas and dust compared to
    other galaxies in the early Universe, which gives us plenty of potential opportunities to observe abundant molecules and to better understand
    how these life-creating elements impacted the development of the early Universe." Water, in particular, is the third most abundant molecule
    in the Universe after molecular hydrogen and carbon monoxide. Previous
    studies of galaxies in the local and early Universe have correlated water emission and the far-infrared emission from dust. "The dust absorbs the ultraviolet radiation from the stars in the galaxy and re-emits it as far-infrared photons," said Jarugula. "This further excites the water molecules, giving rise to the water emission that scientists are able
    to observe. In this case, it helped us to detect water emission in this
    massive galaxy. This correlation could be used to develop water as a
    tracer of star formation, which could then be applied to galaxies on a cosmological scale." Studying the first galaxies to form in the Universe
    helps scientists to better understand the birth, growth, and evolution
    of the Universe, and everything in it, including the Solar System and
    Earth. "Early galaxies are forming stars at a rate thousands of times
    that of the Milky Way, said Jarugula. "Studying the gas and dust content
    of these early galaxies informs us of their properties, such as how many
    stars are being formed, the rate at which gas is converted into stars,
    how galaxies interact with each other and with the interstellar medium,
    and more." According to Jarugula, there's plenty left to learn about SPT0311-58 and the galaxies of the early Universe. "This study not
    only provides answers about where, and how far away, water can exist
    in the Universe, but also has given rise to a big question: How has
    so much gas and dust assembled to form stars and galaxies so early in
    the Universe? The answer requires further study of these and similar star-forming galaxies to get a better understanding of the structural
    formation and evolution of the early Universe." "This exciting
    result, which shows the power of ALMA, adds to a growing collection of observations of the early Universe," said Joe Pesce, astrophysicist and
    ALMA Program Director at the National Science Foundation.

    "These molecules, important to life on Earth, are forming as soon
    as they can, and their observation is giving us insight into the
    fundamental processes of a Universe very much different from today's." ========================================================================== Story Source: Materials provided by
    National_Radio_Astronomy_Observatory. Note: Content may be edited for
    style and length.


    ========================================================================== Journal Reference:
    1. Sreevani Jarugula, Joaquin D.Vieira, Axel Weiss, Justin S. Spilker,
    Manuel Aravena, Melanie Archipley, Matthieu Be'thermin, Scott
    C. Chapman, Chenxing Dong, Thomas R. Greve, Kevin Harrington,
    Christopher C. Hayward, Yashar Hezaveh, Ryley Hill, Katrina
    C. Litke, Matthew A. Malkan, Daniel P. Marrone, Desika Narayanan,
    Kedar A. Phadke, Cassie Reuter, Kaja M.

    Rotermund. Molecular Line Observations in Two Dusty Star-Forming
    Galaxies at z = 6.9. The Astrophysical Journal, 2021 [abstract] ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/11/211103084422.htm

    --- up 8 weeks, 6 days, 8 hours, 25 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)