Domestic cats drive spread of Toxoplasma parasite to wildlife
Date:
November 10, 2021
Source:
University of British Columbia
Summary:
New research suggests free-roaming cats are likely to blame in
the spread of the potentially deadly Toxoplasma gondii parasite
to wildlife in densely populated urban areas.
FULL STORY ==========================================================================
New UBC research suggests free-roaming cats are likely to blame in the
spread of the potentially deadly Toxoplasma gondii parasite to wildlife
in densely populated urban areas.
==========================================================================
The study -- the first to analyze so many wildlife species over a global
scale -- also highlights how healthy ecosystems can protect against
these types of pathogens.
The researchers, led by UBC faculty of forestry adjunct professor
Dr. Amy Wilson, examined 45,079 cases of toxoplasmosis in wild mammals
-- a disease that has been linked to nervous system disorders, cancers
and other debilitating chronic conditions -- using data from 202 global studies.
They found wildlife living near dense urban areas were more likely to
be infected.
"As increasing human densities are associated with increased densities
of domestic cats, our study suggests that free-roaming domestic cats
-- whether pets or feral cats -- are the most likely cause of these infections," says Dr.
Wilson.
"This finding is significant because by simply limiting free roaming of
cats, we can reduce the impact of Toxoplasma on wildlife." One infected
cat can excrete as many as 500 million Toxoplasma oocysts (or eggs) in
just two weeks. The oocysts can then live for years in soil and water
with the potential to infect any bird or mammal, including humans.
Toxoplasmosis is particularly dangerous for pregnant people.
If an animal is healthy, the parasite remains dormant and rarely causes
direct harm. However, if an animal's immune system is compromised,
the parasite can trigger illness and potentially death.
The study also highlights the way healthy forests, streams and other
ecosystems can filter out dangerous pathogens like Toxoplasma, notes
Dr. Wilson.
"We know that when wetlands are destroyed or streams are restricted,
we are more likely to experience runoff that carries more pathogens
into the waters where wild animals drink or live," she says. "And when
their habitats are healthy, wildlife thrives and tends to be more disease-resistant." Research results like these remind us that all
ecosystems, forested or other, are intrinsically linked.
"There is a growing recognition among forest science professionals and
other groups that protecting biodiversity and the ecosystems it supports
is an efficient and economical approach to reducing disease transfer
between wildlife, domestic animals and humans. Conservation is really preventative medicine in action," says Dr. Wilson.
========================================================================== Story Source: Materials provided by University_of_British_Columbia. Note: Content may be edited for style and length.
========================================================================== Journal Reference:
1. Amy G. Wilson, Scott Wilson, Niloofar Alavi, David R. Lapen. Human
density is associated with the increased prevalence of a generalist
zoonotic parasite in mammalian wildlife. Proceedings of the
Royal Society B: Biological Sciences, 2021; 288 (1961) DOI:
10.1098/rspb.2021.1724 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2021/11/211110104303.htm
--- up 9 weeks, 6 days, 9 hours, 25 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)