Air quality models can improve the accuracy of forecasts of daily solar
power production in the future
Date:
December 2, 2021
Source:
Leibniz Institute for Tropospheric Research (TROPOS)
Summary:
The expansion of renewable energies is placing increasing demands on
the power grids. Precise forecasts of the amount of solar power that
will be fed into the grid is key to effective energy management. In
addition to clouds, aerosol particles also strongly influence the
amount of electricity generated by photovoltaic systems. Current
air quality models are a good basis for estimating the production
of solar electricity, but they could be further improved.
FULL STORY ==========================================================================
The expansion of renewable energies is placing increasing demands on
the power grids. Precise forecasts of the amount of solar power that
will be fed into the grid is key to effective energy management. In
addition to clouds, aerosol particles also strongly influence the
amount of electricity generated by photovoltaic systems. Current
air quality models are a good basis for estimating the production
of solar electricity. However, they should be further improved. This
is the conclusion drawn by researchers from the Leibniz Institute for Tropospheric Research (TROPOS), the German Weather Service (DWD) and the International Centre for Sustainable Development (IZNE) at Bonn-Rhein-
Sieg University of Applied Sciences.
==========================================================================
As part of the joint project "MetPVNet," they have compared the
reanalysis of the Copernicus Atmosphere Monitoring Service (CAMS) with
real solar radiation measurement data from 25 DWD stations in Germany
for one year. The study has now been published in the journal Atmospheric Chemistry and Physics (ACP).
The warming or cooling of the atmosphere does not only depend on clouds
and greenhouse gases. Aerosol particles also play an important role. The
tiny particles (also known as particulate matter) float in the air
and, despite their small size, reflect and absorb some of the sun's
energy. Too little is currently known about how strongly this effect
influences the amount of electricity generated from photovoltaic (PV)
systems. In the interdisciplinary research project "MetPVNet," experts
from atmospheric research and the field of renewable energies therefore
worked together to (further) develop innovative energy meteorological
methods for predicting irradiation and PV output at plant level and to
test them with practical partners.
As part of the joint project, which ran from 2017 to 2021, a study was
also conducted which has now been published. This study examined the
radiative effect of aerosol as an example for Germany during 2015 on
the ground and within the atmosphere using two complementary modelling approaches: Firstly, data on solar radiation in cloud-free situations
from 25 stations of the observation network of the German Weather
Service (DWD) and the global AERONET network throughout Germany were considered. On the other hand, the radiative effect was estimated by
explicit radiative transfer simulations based on the reanalysis of the Copernicus Atmosphere Monitoring Service (CAMS) of the European Union
(ESA) on atmospheric composition.
The evaluation which has now been published demonstrated for the example
year 2015 that there is a clear gradient in solar energy in Germany:
Due to the higher position of the sun, it shines more intensively in the
south of the Federal Republic on an annual average of up to 0.5 megawatt
hours per square metre than in the north. Due to aerosol from continental sources, solar energy is dimmed in the east of Germany compared to the
west. Both effects overlap and ensure that the annual average yield of photovoltaic systems on the Neisse River in the far east of Germany is
up to 0.05 megawatts per square metre lower than in the Alps in the far
south of Germany. In practice, a variety of other influencing factors
from cloud cover to the height of the solar installation play a role.
"The radiative effect of aerosol should definitely be taken into account
in daily solar power forecasts. The CAMS model of the European climate observation programme Copernicus is a good basis, but it should also be
further improved so that grid operators can better control the increasing
share of electricity from photovoltaic systems in their power grids. Our
basic research thus provides an important building block for the energy transition and emphasises the social relevance of aerosol research beyond
air quality," emphasises Dr. Hartwig Deneke, head of the Satellite
Remote Sensing working group at TROPOS. His working group mainly uses
satellite data to investigate the properties of clouds and aerosol and
to determine their influence on solar and terrestrial radiation.
The study also underlines that ground measurements of solar radiation
are important as a reference, since the actual solar energy on solar
arrays varies greatly and this can so far only be partially predicted
by air quality models.
The published analysis is an important step towards an accurate solar
weather report, but the road ahead is still long. "In our study, we
were only able to study one year. However, solar radiation and air
quality sometimes fluctuate significantly between years. Therefore, in
the next step, we want to consider a longer time period, from 2003 to
2021, and we are curious to see whether our findings from 2015 are also applicable to other years," explains Jonas Witthuhn from TROPOS. Not
only electricity grid operators in Germany, but also worldwide could
benefit from an improved forecast of photovoltaic output. Tilo Arnhold ========================================================================== Story Source: Materials provided by Leibniz_Institute_for_Tropospheric_Research_(TROPOS).
Original written by Tilo Arnhold. Note: Content may be edited for style
and length.
========================================================================== Journal Reference:
1. Jonas Witthuhn, Anja Hu"nerbein, Florian Filipitsch, Stefan Wacker,
Stefanie Meilinger, Hartwig Deneke. Aerosol properties and
aerosol- radiation interactions in clear-sky conditions over
Germany. Atmospheric Chemistry and Physics, 2021; 21 (19): 14591
DOI: 10.5194/acp-21-14591- 2021 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2021/12/211202141538.htm
--- up 3 weeks, 2 hours, 55 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)