• Scientists distill cow's milk into nano-

    From ScienceDaily@1:317/3 to All on Mon Aug 23 21:30:34 2021
    Scientists distill cow's milk into nano-capsules for drug delivery


    Date:
    August 23, 2021
    Source:
    Virginia Tech
    Summary:
    Scientists have developed a novel way to isolate exosomes from
    cow's milk. Exosomes are nano-sized biological capsules that cells
    produce to protect and courier delicate molecules throughout the
    body. Harvesting them to achieve clinical-grade levels of purity,
    however, is a complex process.



    FULL STORY ========================================================================== Exosomes are nano-sized biological capsules that cells produce to protect
    and courier delicate molecules throughout the body. The capsules are
    hardy enough to withstand enzymatic breakdown, as well as acidic and temperature fluctuations in the gut and bloodstream, making them a prime candidate for drug delivery.


    ========================================================================== Harvesting them to achieve clinical-grade levels of purity, however,
    is a complex process.

    "Exosomes are abundant in cow's milk, yet they're difficult to isolate
    from other milk proteins and lipids," said Rob Gourdie, professor and
    director of the Center for Vascular and Heart Research at the Fralin
    Biomedical Research Institute at VTC.

    Gourdie's laboratory developed a scalable method to harvest exosomes
    from unpasteurized cow's milk. Using this purification method, which was published this month in Nanotheranostics, the research team can extract
    roughly a cup of purified exosomes for every gallon of unpasteurized milk.

    "For the first time, we've charted a path toward the industrial
    scalability of exosome purification for oral drug delivery," said
    Gourdie, who is also the Commonwealth Research Commercialization Fund
    Eminent Scholar in Heart Reparative Medicine Research and a professor
    of biomedical engineering and mechanics in Virginia Tech's College
    of Engineering.

    The research team developed their multi-step, cost-effective purification process, which optimizes filtration methods, and timing of temperature
    and chemical treatments effecting calcium levels, during the COVID-19
    pandemic.

    Spencer Marsh and Kevin Pridham, both postdoctoral fellows in Gourdie's
    lab at the Fralin Biomedical Research Institute, and Jane Jourdan,
    Gourdie's lab manager, did the practical work to develop the proprietary procedure.



    ==========================================================================
    "Our team worked together effectively and safely on this project
    throughout the pandemic," Gourdie said. "It was a sight to see --
    their selfless teamwork, enthusiasm and dedication to overcoming
    challenges is something that does not happen as often as you might
    think in science. There were many failures, but eventually we figured
    out stepwise processes that worked." Joy Wolfram, assistant professor
    of medicine at Mayo Clinic who was not involved in the study, says the
    new protocol advances the pharmaceutical potential for exosomes.

    "What's remarkable is the quantity of extracellular vesicles they are
    able to produce. Isolating and manufacturing extracellular vesicles in a scalable manner has always prevented their translation into the clinic,
    but this paper shows a path to overcome those roadblocks," Wolfram
    said. Wolfram previously published a protocol for using tangential
    flow filtration technology that Gourdie's team adapted to isolate the
    milk exosomes.

    Exosomes are secreted naturally by nearly all cell types in humans
    and other mammals, and can be found abundantly in blood, lymph, urine,
    and milk. Lined with protective membranes, exosomes send biomolecules,
    snippets of genetic material, and chemical signals between cells over
    long ranges.

    Over the past decade, research into their pharmaceutical applications -
    - particularly for the delivery of fragile drugs, such as peptides and microRNAs -- has surged.



    ========================================================================== "Imagine instead of getting a vaccine shot, your nurse hands you a
    milkshake instead. Another milkshake may contain exosomes loaded with
    a therapeutic peptide designed to protect internal organs such as the
    heart from myocardial infarction," Gourdie said.

    Exosomes can also penetrate the blood-brain-barrier, a membrane that
    protects the brain from unwanted pathogens and chemicals, introducing
    a new way to deliver therapeutics to treat neurological diseases and
    brain cancer.

    "Improving the viability of using exosomes opens up a wide range of drug delivery methods with unlimited clinical applications," Gourdie said.

    Gourdie partnered with Homestead Creamery, a local dairy processing plant,
    to obtain unpasteurized milk samples for the study.

    "We have always built our business on relationships, and this is an
    exciting collaboration for us," said Donnie Montgomery, co-founder and
    co-owner of Homestead Creamery.

    Last year Gourdie licensed the intellectual property to deliver heart
    medicine using exosomes through Virginia Tech's LICENSE: Center for
    Technology Commercialization and formed The Tiny Cargo Co.

    ========================================================================== Story Source: Materials provided by Virginia_Tech. Original written by
    Whitney Slightham.

    Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Spencer R. Marsh, Kevin J. Pridham, Jane Jourdan, Robert G. Gourdie.

    Novel Protocols for Scalable Production of High Quality Purified
    Small Extracellular Vesicles from Bovine Milk. Nanotheranostics,
    2021; 5 (4): 488 DOI: 10.7150/ntno.62213 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/08/210823094210.htm

    --- up 15 weeks, 3 days, 22 hours, 45 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)