Don't you think I don't like APL, or I think I have right...
for me ," is bugged
({leftshoe},1),{dieresis}1 2
+2------------+
+2---+ +2---+
1 1 1 2
+~---+ +~---+2
+?------------+
1,{dieresis}1 2
+2------------+
+2---+ +2---+
1 1 1 2
+~---+ +~---+2
+?------------+
({leftshoe},1)
+----+
+1-+
1
+~-+2
+?---+
1
1
~
Why the same result when
This object
({leftshoe},1)
has different type of this
1
?
The same
,{dieresis} (1 1)(2 2)(3 3)
+3-------------------+
+2---+ +2---+ +2---+
1 1 2 2 3 3
+~---+ +~---+ +~---+2
+?-------------------+
,{dieresis} 1 2 3 4
+4------------------+
+1-+ +1-+ +1-+ +1-+
1 2 3 4
+~-+ +~-+ +~-+ +~-+2
+?------------------+
why in this last, each element is boxed, but in the other above, not?
One good question for resolve would be to find the recursive answer in
APL of this codegolf question
https://codegolf.stackexchange.com/questions/34491/list-the-combinations-of-elements-in-a-set
I think for base of induction one function q solution has to return as({alpha}{del}a),({leftbrace}w[1],{omega}{rightbrace}{dieresis}({alpha}-1){del}a{leftarrow}1{downarrow}{omega}){rightbrace}
1 q 1 2 3 4
+4------------------+
+1-+ +1-+ +1-+ +1-+
1 2 3 4
+~-+ +~-+ +~-+ +~-+2
+?------------------+
and as
4 q 1 2 3 4
+----------+
+4-------+
1 2 3 4
+~-------+2
+?---------+
so all solution make wrong the base of induction for me are wrong, in
count the codegolf answers in the site.
This hould be one solution
q{leftarrow}{leftbrace}{alpha}{rightcaretunderbar}{notequalunderbar}w{leftarrow}{omega}:{leftshoe}{omega}{diamond}{alpha}{leftcaretunderbar}1:{leftbrace}1{rightcaretunderbar}{equalunderbar}w:,{dieresis}w{diamond}{leftshoe}{dieresis}w{rightbrace}{diamond}
On Sun, 19 Nov 2023 07:17:48 +0100, Rosario19 <Ros@invalid.invalid>diamond}({alpha}{del}a),({leftbrace}w[1],{omega}{rightbrace}{dieresis}({alpha}-1){del}a{leftarrow}1{downarrow}{omega}){rightbrace}
wrote:
Don't you think I don't like APL, or I think I have right...
for me ," is bugged
({leftshoe},1),{dieresis}1 2
+2------------+
+2---+ +2---+
1 1 1 2
+~---+ +~---+2
+?------------+
1,{dieresis}1 2
+2------------+
+2---+ +2---+
1 1 1 2
+~---+ +~---+2
+?------------+
({leftshoe},1)
+----+
+1-+
1
+~-+2
+?---+
1
1
~
Why the same result when
This object
({leftshoe},1)
has different type of this
1
?
The same
,{dieresis} (1 1)(2 2)(3 3)
+3-------------------+
+2---+ +2---+ +2---+
1 1 2 2 3 3
+~---+ +~---+ +~---+2
+?-------------------+
,{dieresis} 1 2 3 4
+4------------------+
+1-+ +1-+ +1-+ +1-+
1 2 3 4
+~-+ +~-+ +~-+ +~-+2
+?------------------+
why in this last, each element is boxed, but in the other above, not?
One good question for resolve would be to find the recursive answer in
APL of this codegolf question
https://codegolf.stackexchange.com/questions/34491/list-the-combinations-of-elements-in-a-set
I think for base of induction one function q solution has to return as
1 q 1 2 3 4
+4------------------+
+1-+ +1-+ +1-+ +1-+
1 2 3 4
+~-+ +~-+ +~-+ +~-+2
+?------------------+
and as
4 q 1 2 3 4
+----------+
+4-------+
1 2 3 4
+~-------+2
+?---------+
so all solution make wrong the base of induction for me are wrong, in
count the codegolf answers in the site.
This hould be one solution
q{leftarrow}{leftbrace}{alpha}{rightcaretunderbar}{notequalunderbar}w{leftarrow}{omega}:{leftshoe}{omega}{diamond}{alpha}{leftcaretunderbar}1:{leftbrace}1{rightcaretunderbar}{equalunderbar}w:,{dieresis}w{diamond}{leftshoe}{dieresis}w{rightbrace}{
this seems shorter({alpha}{del}a),w[1]{jot},{dieresis}({alpha}-1){del}a{leftarrow}1{downarrow}{omega}{rightbrace}
q{leftarrow}{leftbrace}{alpha}{rightcaretunderbar}{notequalunderbar}w{leftarrow}{omega}:{leftshoe}{omega}{diamond}{alpha}{leftcaretunderbar}1:{leftbrace}1{rightcaretunderbar}{equalunderbar}w:,{dieresis}w{diamond}{leftshoe}{dieresis}w{rightbrace}{diamond}
it seems
{jot},{dieresis}
can be ok
because the answer of these below are differents >({leftshoe},1){jot},{dieresis}1 2
+2----------------+
+2-----+ +2-----+
+1-+ +1-+
1 1 1 2
+~-+ ~2 +~-+ ~2
+?-----+ +?-----+3
+?----------------+
1{jot},{dieresis}1 2
+2------------+
+2---+ +2---+
1 1 1 2
+~---+ +~---+2
+?------------+
so it seems ok for the q function
Someone can make shorter this?
{leftbrace}1{rightcaretunderbar}{equalunderbar}w:,{dieresis}w{diamond}{leftshoe}{dieresis}w{rightbrace}
But increase the numeber of fuction for me is not ok
Don't you think I don't like APL, or I think I have right...
for me ," is bugged
({leftshoe},1),{dieresis}1 2
+2------------+
¦+2---+ +2---+¦
¦¦ 1 1¦ ¦ 1 2¦¦
¦+~---+ +~---+2
+?------------+
1,{dieresis}1 2
+2------------+
¦+2---+ +2---+¦
¦¦ 1 1¦ ¦ 1 2¦¦
¦+~---+ +~---+2
+?------------+
({leftshoe},1)
+----+
¦+1-+¦
¦¦ 1¦¦
¦+~-+2
+?---+
1
1
~
Why the same result when
This object
({leftshoe},1)
has different type of this
1
?
The same
,{dieresis} (1 1)(2 2)(3 3)
+3-------------------+
¦+2---+ +2---+ +2---+¦
¦¦ 1 1¦ ¦ 2 2¦ ¦ 3 3¦¦
¦+~---+ +~---+ +~---+2
+?-------------------+
,{dieresis} 1 2 3 4
+4------------------+
¦+1-+ +1-+ +1-+ +1-+¦
¦¦ 1¦ ¦ 2¦ ¦ 3¦ ¦ 4¦¦
¦+~-+ +~-+ +~-+ +~-+2
+?------------------+
why in this last, each element is boxed, but in the other above, not?
One good question for resolve would be to find the recursive answer in
APL of this codegolf question
https://codegolf.stackexchange.com/questions/34491/list-the-combinations-of-elements-in-a-set
I think for base of induction one function q solution has to return asdiamond}({alpha}{del}a),({leftbrace}w[1],{omega}{rightbrace}{dieresis}({alpha}-1){del}a{leftarrow}1{downarrow}{omega}){rightbrace}
1 q 1 2 3 4
+4------------------+
¦+1-+ +1-+ +1-+ +1-+¦
¦¦ 1¦ ¦ 2¦ ¦ 3¦ ¦ 4¦¦
¦+~-+ +~-+ +~-+ +~-+2
+?------------------+
and as
4 q 1 2 3 4
+----------+
¦+4-------+¦
¦¦ 1 2 3 4¦¦
¦+~-------+2
+?---------+
so all solution make wrong the base of induction for me are wrong, in
count the codegolf answers in the site.
This hould be one solution
q{leftarrow}{leftbrace}{alpha}{rightcaretunderbar}{notequalunderbar}w{leftarrow}{omega}:{leftshoe}{omega}{diamond}{alpha}{leftcaretunderbar}1:{leftbrace}1{rightcaretunderbar}{equalunderbar}w:,{dieresis}w{diamond}{leftshoe}{dieresis}w{rightbrace}{
On 11/19/2023 1:17 AM, Rosario19 wrote:
Don't you think I don't like APL, or I think I have right...
for me ," is bugged
({leftshoe},1),{dieresis}1 2
+2------------+
+2---+ +2---+
1 1 1 2
+~---+ +~---+2
+?------------+
1,{dieresis}1 2
+2------------+
+2---+ +2---+
1 1 1 2
+~---+ +~---+2
+?------------+
({leftshoe},1)
+----+
+1-+
1
+~-+2
+?---+
1
1
~
Why the same result when
This object
({leftshoe},1)
has different type of this
1
?
The expression
(?,1),1 2 ?? ((,1),1) ((,1),2), and
1 ,1 2 ?? ( 1 ,1) ( 1 ,2)
catenating a one-element vector to a scalar is the same as catenating a >scalar to a scalar, so the results are the same.
The same
,{dieresis} (1 1)(2 2)(3 3)
+3-------------------+
+2---+ +2---+ +2---+
1 1 2 2 3 3
+~---+ +~---+ +~---+2
+?-------------------+
,{dieresis} 1 2 3 4
+4------------------+
+1-+ +1-+ +1-+ +1-+
1 2 3 4
+~-+ +~-+ +~-+ +~-+2
+?------------------+
why in this last, each element is boxed, but in the other above, not?
One good question for resolve would be to find the recursive answer in
APL of this codegolf question
https://codegolf.stackexchange.com/questions/34491/list-the-combinations-of-elements-in-a-set
Because NARS2000 has a Combinatorial Operator, a short answer is
set?1 7 4 ? inp?2
set[010 1?inp,?set]
1 7
7 4
1 4
or if you want the answer in lexicographic order
set[010 2?inp,?set]
1 7
1 4
7 4
diamond}({alpha}{del}a),({leftbrace}w[1],{omega}{rightbrace}{dieresis}({alpha}-1){del}a{leftarrow}1{downarrow}{omega}){rightbrace}I think for base of induction one function q solution has to return as
1 q 1 2 3 4
+4------------------+
+1-+ +1-+ +1-+ +1-+
1 2 3 4
+~-+ +~-+ +~-+ +~-+2
+?------------------+
and as
4 q 1 2 3 4
+----------+
+4-------+
1 2 3 4
+~-------+2
+?---------+
so all solution make wrong the base of induction for me are wrong, in
count the codegolf answers in the site.
This hould be one solution
q{leftarrow}{leftbrace}{alpha}{rightcaretunderbar}{notequalunderbar}w{leftarrow}{omega}:{leftshoe}{omega}{diamond}{alpha}{leftcaretunderbar}1:{leftbrace}1{rightcaretunderbar}{equalunderbar}w:,{dieresis}w{diamond}{leftshoe}{dieresis}w{rightbrace}{
Good job! That works.
Sysop: | Keyop |
---|---|
Location: | Huddersfield, West Yorkshire, UK |
Users: | 498 |
Nodes: | 16 (2 / 14) |
Uptime: | 39:00:51 |
Calls: | 9,798 |
Files: | 13,751 |
Messages: | 6,189,403 |