• Re: X in every language syndrome

    From B. Pym@21:1/5 to All on Sun Jul 7 11:48:28 2024
    The question is about so-called "bellied"
    numbers, defined as 4-digit integers for which the sum of the two
    "middle" digits is smaller than the sum of the two outer digits. So 1265
    is bellied, while 4247 is not.

    [ He means the sum of middle digits is larger. ]


    This checking part is easy:

    (defun bellied-number-p (n)
    (> (+ (mod (truncate n 10) 10) (mod (truncate n 100) 10))
    (+ (mod n 10) (truncate n 1000))))

    Now the task is to find the longest, uninterrupted sequence of bellied numbers within all 4-digit number, hence from 1000 to 9999. And this is
    where I terribly screwed up:

    While the following code does the job,

    (let ((max-length 0)
    (current-length 0)
    (last-bellied-number 0))
    (dotimes (m 9000)
    (let ((n (+ 1000 m)))
    (if (bellied-number-p n)
    (incf current-length)
    (progn
    (when (> current-length max-length)
    (setf max-length current-length)
    (setf last-bellied-number (1- n)))
    (setf current-length 0)))))
    (print (format t "~&Longest sequence of ~a bellied numbers ends at ~a."
    max-length last-bellied-number)))

    [ Another poster: ]

    TXR Lisp.

    Having defined:

    (defun bellied-p (num)
    (let ((d (digits num)))
    (and (= 4 (len d))
    (< (+ [d 0] [d 3])
    (+ [d 1] [d 2])))))

    We casually do this at the prompt:

    1> [find-max [partition-by bellied-p (range 1000 9999)] :
    [iff [chain car bellied-p] len (ret 0)]]
    (1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
    1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
    1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
    1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
    1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
    1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
    1998 1999)


    Shorter.

    Gauche Scheme:

    (use gauche.sequence) ;; group-contiguous-sequence find-max
    ,print-mode pretty #t length #f width 64

    (define (bellied? n)
    (define (d i) (mod (div n (expt 10 i)) 10))
    (> (+ (d 1) (d 2))
    (+ (d 0) (d 3))))

    (find-max
    (group-contiguous-sequence (filter bellied? (iota 9000 1000)))
    :key length)

    ===>
    (1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
    1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
    1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
    1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
    1992 1993 1994 1995 1996 1997 1998 1999)


    In Forth?

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Ahmed@21:1/5 to All on Sun Jul 7 14:36:39 2024
    Hi,


    include clp_v2.fs

    \ abcd
    \ a, b, c, d in {0,..,9} in general
    \ abcd is between 1920 and 2000 in this example

    \ b+c > a+d

    0 to min_val
    10 to max_val

    0 value a
    0 value b
    0 value c
    0 value d

    : solve
    _begin_
    2 1 .---> a a a?,
    10 9 .---> b b a?,
    10 2 .---> c c a?,
    10 0 .---> d d a?,

    b c + a d + > t?,

    a 10 * b + 10 * c + 10 * d + .
    _end_
    ;


    solve gvies:

    solve 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
    1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
    1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
    1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
    1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 ok

    Here I used clp_v2.fs given hereafter


    \ ----- for CLP
    0 value vals_num
    20 value vals_num_max

    0 value min_val
    0 value max_val

    0 value nloops_prec
    0 value nloops
    0 value constraint_num
    30 value max_num_constraints
    0 value constraint_count

    : values dup 1+ to vals_num 0 ?do 0 value loop ;
    : fvalues 0 ?do 0e fvalue loop ;

    create loop_loc max_num_constraints allot
    loop_loc max_num_constraints erase

    create constraints_stack max_num_constraints cells allot
    constraints_stack max_num_constraints cells erase

    constraints_stack value constraints_stack_pointer

    : push_to_constraints_stack
    constraints_stack_pointer cell+ to constraints_stack_pointer
    constraints_stack_pointer !
    ;
    : pop_from_constraints_stack
    constraints_stack_pointer dup @
    swap cell- to constraints_stack_pointer
    ;

    : update_constraints
    constraint_num 1+ dup to constraint_count to constraint_num
    nloops nloops_prec <> if
    1 loop_loc constraint_num + c!
    nloops to nloops_prec
    then
    ;
    : resolve_constraints
    loop_loc constraint_num + c@ if
    postpone loop
    then
    constraint_num 1- to constraint_num
    ;
    : .---> nloops 1+ to nloops postpone do postpone i postpone to ;
    immediate
    : ----> postpone to ; immediate
    : a| postpone then resolve_constraints ; immediate
    : t| postpone then resolve_constraints ; immediate
    : a?,
    postpone min_val postpone max_val postpone 1+ postpone within
    postpone if
    update_constraints ['] a| push_to_constraints_stack
    ; immediate
    : t?,
    postpone if
    update_constraints ['] t| push_to_constraints_stack
    ; immediate
    : _begin_ ; immediate
    : _end_
    constraint_count 0 do
    pop_from_constraints_stack execute
    loop
    ; immediate

    \ ---------end for CLP

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Ahmed@21:1/5 to All on Sun Jul 7 14:59:50 2024
    Here, another version


    include clp_v2.fs

    \ abcd
    \ a, b, c, d in {0,..,9}, here abcd between 1920 and 2000
    \ b+c > a+d
    0 to min_val
    10000 to max_val

    5 values abcd a b c d

    : solve
    _begin_
    2000 1920 .---> abcd abcd a?,
    abcd 10 /mod
    10 /mod
    10 /mod
    to d to c to b to a
    b c + a d + > t?,

    abcd .
    _end_
    ;

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From mhx@21:1/5 to All on Sun Jul 7 16:24:47 2024
    Why would I want to do this in Lisp? (nice CLP example though):

    FORTH> : solve
    <3>[FORTH>] 0 0 #10 LOCALS| cr? n4+n1 n3+n2 |
    <3>[FORTH>] CR #2000 #1920
    <3>[FORTH>] DO
    [3]<3>[FORTH>] I #10 /MOD SWAP TO n4+n1
    [3]<3>[FORTH>] #10 /MOD SWAP TO n3+n2
    [3]<3>[FORTH>] #10 /MOD SWAP +TO n3+n2
    [3]<3>[FORTH>] +TO n4+n1
    [3]<3>[FORTH>] n3+n2 n4+n1 > IF I . 1 -TO cr? ENDIF
    [3]<3>[FORTH>] cr? 0= IF CR #10 TO cr? ENDIF
    [3]<3>[FORTH>] LOOP ; ok
    FORTH> solve
    1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
    1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
    1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
    1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
    1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
    1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    ok

    -marcel

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From B. Pym@21:1/5 to B. Pym on Sun Jul 7 19:40:26 2024
    On 7/7/2024, B. Pym wrote:

    The question is about so-called "bellied"
    numbers, defined as 4-digit integers for which the sum of the two
    "middle" digits is smaller than the sum of the two outer digits. So 1265
    is bellied, while 4247 is not.

    [ He means the sum of middle digits is larger. ]


    This checking part is easy:

    (defun bellied-number-p (n)
    (> (+ (mod (truncate n 10) 10) (mod (truncate n 100) 10))
    (+ (mod n 10) (truncate n 1000))))

    Now the task is to find the longest, uninterrupted sequence of bellied numbers within all 4-digit number, hence from 1000 to 9999. And this is where I terribly screwed up:

    While the following code does the job,

    (let ((max-length 0)
    (current-length 0)
    (last-bellied-number 0))
    (dotimes (m 9000)
    (let ((n (+ 1000 m)))
    (if (bellied-number-p n)
    (incf current-length)
    (progn
    (when (> current-length max-length)
    (setf max-length current-length)
    (setf last-bellied-number (1- n)))
    (setf current-length 0)))))
    (print (format t "~&Longest sequence of ~a bellied numbers ends at ~a."
    max-length last-bellied-number)))

    [ Another poster: ]

    TXR Lisp.

    Having defined:

    (defun bellied-p (num)
    (let ((d (digits num)))
    (and (= 4 (len d))
    (< (+ [d 0] [d 3])
    (+ [d 1] [d 2])))))

    We casually do this at the prompt:

    1> [find-max [partition-by bellied-p (range 1000 9999)] :
    [iff [chain car bellied-p] len (ret 0)]]
    (1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
    1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
    1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
    1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
    1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
    1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
    1998 1999)


    Shorter.

    Gauche Scheme:

    (use gauche.sequence) ;; group-contiguous-sequence find-max
    ,print-mode pretty #t length #f width 64

    (define (bellied? n)
    (define (d i) (mod (div n (expt 10 i)) 10))
    (> (+ (d 1) (d 2))
    (+ (d 0) (d 3))))

    (find-max
    (group-contiguous-sequence (filter bellied? (iota 9000 1000)))
    :key length)

    ===>
    (1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
    1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
    1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
    1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
    1992 1993 1994 1995 1996 1997 1998 1999)


    In Forth?

    A lower-level way.

    (define (bellied? n)
    (define (d i) (mod (div n (expt 10 i)) 10))
    (> (+ (d 1) (d 2))
    (+ (d 0) (d 3))))

    (define (calc-length i)
    (do ((j i (+ j 1)))
    ((not (bellied? j)) (- j i))))

    (define (longest-bellied-seq)
    (let go ((i 1000) (start 0) (len 0))
    (if (> i 9999)
    (list start len)
    (let ((new-len (calc-length i)))
    (cond ((zero? new-len) (go (+ i 1) start len))
    ((> new-len len) (go (+ i new-len) i new-len))
    (#t (go (+ i new-len) start len)))))))

    ===>
    (1920 80)

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)