• Re: Drinker Paradox again (Re: Some Error in Dag Prawitz 1970 Paper)

    From Mild Shock@21:1/5 to Mild Shock on Wed Jun 12 19:21:35 2024
    Because ∃x ∀y (P(y) → P(x)) is not intuitionistically
    valid, it is also the case that for a witness a
    we have that ∀y (P(y) → P(a)) isn't provable.

    Because otherwise the existential property would be
    violated. Lets try this here:

    :- show((![y]: (p(y) => p(a)))).
    Fehler: Direktive fehlgeschlagen.
    user auf 5

    Yeah it is indeed not provable. At least when we
    trust the above proof search. But its also easy
    to see since ∀y and → are invertible, to prove it,

    we would have to prove:

    p(y) |- p(a) with y ∉ p(a)

    where the side condition is from the ∀y inversion.
    So the counter example is this proof:

    |- ¬ ∀x ¬ ∀y (P(y) → P(x))


    Mild Shock schrieb:
    The counter example is a variant of the
    Drinker Paradox. Its actually a horrid counter
    example, since it shows something much

    more disturbing. This here is
    intuitionistically provable:

    /* intuitionistically provable */
    |- ¬ ∀x ¬ ∀y (P(y) → P(x))

    But this here isn't intuitionistically
    provable:

    /* not intuitionistically provable */
    |- ∃x ∀y (P(y) → P(x))

    So the Dag Prawitz approach of modelling the
    existential quantifier ∃x as ¬ ∀x ¬, which he
    repeats over and over in other papers, and

    in his natural deduction booklet, is a very
    strong form of existential quantifier. Not the
    intuitionistic existential quantifier.

    Mild Shock schrieb:
    The main Problem is we cannot fully identify
    the existential quantifier with the negation
    of the universal quantifier with a negated argument

    in minimal and intuitionistic logic. Here some
    computer experimentation. This direction
    works fine, namely we have even in minimal logic:

    1.     |__∃x P(x)         A
    2.     |  |__∀x ¬P(x)         A
    3.     |  |  P(a)         E∃ 1
    4.     |  |  ¬P(a)         E∀ 2
    5.     |  |  ⊥              E¬ 4, 3
    6.     |  ¬ ∀x ¬P(x)         I¬ 2, 5
    7.     ∃x P(x) → ¬ ∀x ¬P(x)     I→ 1, 6

    But the other direction doesn't work, requires
    Reductio Ad Absurdum (RAA) indicated by **:

    1.     |__¬ ∀x ¬P(x)         A
    2.     |  |__¬ ∃x P(x)         A
    3.     |  |  |__P(a)         A
    4.     |  |  |  ∃x P(x)     I∃ 3
    5.     |  |  |  ⊥         E¬ 2, 4
    6.     |  |  ¬P(a)         I¬ 3, 5
    7.     |  |  ∀x ¬P(x)         I∀ 6
    8.     |  |  ⊥              E¬ 1, 7
    9.     |  ∃x P(x)          ** RAA 2, 8
    10.     ¬ ∀x ¬P(x) → ∃x P(x)     I→ 1, 9

    The maximum we can do is a kind of Markov rule,
    not minimal logic valid. But intuitionstic logic
    valid, since it uses Ex Falso Quodlibet (EFQ)

    indicated by *:

    1.     |__(∃x P(x) ∨ ∀x ¬P(x)) ∧ ¬ ∀x ¬P(x)         A
    2.     |  ∃x P(x) ∨ ∀x ¬P(x)                  E∧₁ 1
    3.     |  ¬ ∀x ¬P(x)                      E∧₂ 1
    4.     |  |__∀x ¬P(x)                      A
    5.     |  |  |__P(a)                      A
    6.     |  |  |  ¬P(a)                      E∀ 4
    7.     |  |  |  ⊥                      E¬ 6, 5
    8.     |  |  ¬P(a)                      I¬ 5, 7 >> 9.     |  |  ∀x ¬P(x)                      I∀ 8
    10.     |  |  ⊥                          E¬ 3, 9
    11.     |  |  ∃x P(x)                       * EFQ 10
    12.     |  ∀x ¬P(x) → ∃x P(x)                  I→ 4, 11
    13.     |  |__∃x P(x)                      A
    14.     |  |  P(b)                      E∃ 13 >> 15.     |  |  ∃x P(x)                      I∃ 14
    16.     |  ∃x P(x) → ∃x P(x)                  I→ 13, 15
    17.     |  ∃x P(x) ∨ ∀x ¬P(x) → ∃x P(x)                 E∨ 16, 12
    18.     |  ∃x P(x)                                 E→ 17, 2
    19.     (∃x P(x) ∨ ∀x ¬P(x)) ∧ ¬ ∀x ¬P(x) → ∃x P(x)     I→ 1, 18

    But when one proves ~ ∀x ~ A(x), this doesn't
    mean one also assumes ∃x A(x) | ∀x ~A(x).

    Mild Shock schrieb:
    It seems this paper is flawed:

    SOME RESULTS FOR INTUITIONISTIC LOGIC WITH SECOND
    ORDER QUANTIFICATION RULES
    Dag Prawitz - 1970
    https://www.sciencedirect.com/science/article/abs/pii/S0049237X08707572

    The cut elimination might be valid.
    But I guess he is jumping to conclusions
    when he thinks that a proof:

    |- ~ ∀x ~ A(x)

    Has the existence property. The flaw
    is easy to spot. He thinks that a proof,
    with the non-invertible left hand ∀:

    ∀x B(x) |- C

    Implies nevertheless a certain form of
    invertibility in that there are terms
    t1, .., tn such that we have a proof:

    B(t1), ..., B(tn) |- C

    Unless B is restricted to some special
    set of formulas, I suspect that the above
    is fallacious.

    Any counter example that shows the fallacy?




    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Mild Shock@21:1/5 to Mild Shock on Wed Jun 12 19:17:44 2024
    The counter example is a variant of the
    Drinker Paradox. Its actually a horrid counter
    example, since it shows something much

    more disturbing. This here is
    intuitionistically provable:

    /* intuitionistically provable */
    |- ¬ ∀x ¬ ∀y (P(y) → P(x))

    But this here isn't intuitionistically
    provable:

    /* not intuitionistically provable */
    |- ∃x ∀y (P(y) → P(x))

    So the Dag Prawitz approach of modelling the
    existential quantifier ∃x as ¬ ∀x ¬, which he
    repeats over and over in other papers, and

    in his natural deduction booklet, is a very
    strong form of existential quantifier. Not the
    intuitionistic existential quantifier.

    Mild Shock schrieb:
    The main Problem is we cannot fully identify
    the existential quantifier with the negation
    of the universal quantifier with a negated argument

    in minimal and intuitionistic logic. Here some
    computer experimentation. This direction
    works fine, namely we have even in minimal logic:

    1.     |__∃x P(x)         A
    2.     |  |__∀x ¬P(x)         A
    3.     |  |  P(a)         E∃ 1
    4.     |  |  ¬P(a)         E∀ 2
    5.     |  |  ⊥              E¬ 4, 3
    6.     |  ¬ ∀x ¬P(x)         I¬ 2, 5
    7.     ∃x P(x) → ¬ ∀x ¬P(x)     I→ 1, 6

    But the other direction doesn't work, requires
    Reductio Ad Absurdum (RAA) indicated by **:

    1.     |__¬ ∀x ¬P(x)         A
    2.     |  |__¬ ∃x P(x)         A
    3.     |  |  |__P(a)         A
    4.     |  |  |  ∃x P(x)     I∃ 3
    5.     |  |  |  ⊥         E¬ 2, 4
    6.     |  |  ¬P(a)         I¬ 3, 5
    7.     |  |  ∀x ¬P(x)         I∀ 6
    8.     |  |  ⊥              E¬ 1, 7
    9.     |  ∃x P(x)          ** RAA 2, 8
    10.     ¬ ∀x ¬P(x) → ∃x P(x)     I→ 1, 9

    The maximum we can do is a kind of Markov rule,
    not minimal logic valid. But intuitionstic logic
    valid, since it uses Ex Falso Quodlibet (EFQ)

    indicated by *:

    1.     |__(∃x P(x) ∨ ∀x ¬P(x)) ∧ ¬ ∀x ¬P(x)         A
    2.     |  ∃x P(x) ∨ ∀x ¬P(x)                  E∧₁ 1
    3.     |  ¬ ∀x ¬P(x)                      E∧₂ 1
    4.     |  |__∀x ¬P(x)                      A 5.     |  |  |__P(a)                      A 6.     |  |  |  ¬P(a)                      E∀ 4
    7.     |  |  |  ⊥                      E¬ 6, 5 8.     |  |  ¬P(a)                      I¬ 5, 7 9.     |  |  ∀x ¬P(x)                      I∀ 8
    10.     |  |  ⊥                          E¬ 3, 9
    11.     |  |  ∃x P(x)                       * EFQ 10
    12.     |  ∀x ¬P(x) → ∃x P(x)                  I→ 4, 11
    13.     |  |__∃x P(x)                      A 14.     |  |  P(b)                      E∃ 13 15.     |  |  ∃x P(x)                      I∃ 14
    16.     |  ∃x P(x) → ∃x P(x)                  I→ 13, 15
    17.     |  ∃x P(x) ∨ ∀x ¬P(x) → ∃x P(x)                 E∨ 16, 12
    18.     |  ∃x P(x)                                 E→ 17, 2
    19.     (∃x P(x) ∨ ∀x ¬P(x)) ∧ ¬ ∀x ¬P(x) → ∃x P(x)     I→ 1, 18

    But when one proves ~ ∀x ~ A(x), this doesn't
    mean one also assumes ∃x A(x) | ∀x ~A(x).

    Mild Shock schrieb:
    It seems this paper is flawed:

    SOME RESULTS FOR INTUITIONISTIC LOGIC WITH SECOND
    ORDER QUANTIFICATION RULES
    Dag Prawitz - 1970
    https://www.sciencedirect.com/science/article/abs/pii/S0049237X08707572

    The cut elimination might be valid.
    But I guess he is jumping to conclusions
    when he thinks that a proof:

    |- ~ ∀x ~ A(x)

    Has the existence property. The flaw
    is easy to spot. He thinks that a proof,
    with the non-invertible left hand ∀:

    ∀x B(x) |- C

    Implies nevertheless a certain form of
    invertibility in that there are terms
    t1, .., tn such that we have a proof:

    B(t1), ..., B(tn) |- C

    Unless B is restricted to some special
    set of formulas, I suspect that the above
    is fallacious.

    Any counter example that shows the fallacy?



    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)