• Sign and complex.

    From Richard Hachel@21:1/5 to All on Mon Mar 3 21:37:07 2025
    Complex numbers and products of different complex signs.

    What is a complex number?

    It is initially an imaginary number which is a duality.

    The two real roots of a quadratic curve, for example, are a duality.

    If we find as a root x'=2 and x"=4 we can include these two roots in a
    single expression: Z=3(+/-)i.

    Z is this dual number which will split into x'=3+i and x"=3-i.

    As in Hachel i^x=-1 whatever x, we have: x'=2 and x"=4.

    Be careful with the signs (i=-1). If we add i, we subtract 1.

    If we subtract 5i, we add 5.

    But let's go further.
    A small problem arises in the products of complexes.

    Certainly, if we take complexes of inverse spacings, that is to say (+ib)
    for one and (-ib) for the other, everything will go very well.

    Let's set z1=3-i and z2=4+2i.

    We have z1*z2=12+6i-4i-2i²=14+2i

    Let's set the inverse by permuting the signs of b:

    z1=3+i and z2=4-2i.

    We have z1*z2=12-6i+4i-2i²=14-2i

    We notice that each time, we did:
    Z=(aa')-(bb)+i(ab'+a'b)
    and that it works.

    Question: Why does this formula become incorrect for complexes of the same
    sign in b?

    Example Z=(3+i)(4+2i) or Z=(3-i)(4-2i)

    The formula given by mathematicians is incorrect.
    I am not saying that it does not give a result.
    I am saying that it is incorrect.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Python@21:1/5 to All on Mon Mar 3 21:47:02 2025
    Le 03/03/2025 à 22:37, Richard Hachel a écrit :
    Complex numbers and products of different complex signs.

    What is a complex number?

    It is initially an imaginary number which is a duality.

    The two real roots of a quadratic curve, for example, are a duality.

    If we find as a root x'=2 and x"=4 we can include these two roots in a single expression: Z=3(+/-)i.

    Z is this dual number which will split into x'=3+i and x"=3-i.

    As in Hachel i^x=-1 whatever x, we have: x'=2 and x"=4.

    Be careful with the signs (i=-1). If we add i, we subtract 1.

    If we subtract 5i, we add 5.

    But let's go further.
    A small problem arises in the products of complexes.

    Certainly, if we take complexes of inverse spacings, that is to say (+ib) for one and (-ib) for the other, everything will go very well.

    Let's set z1=3-i and z2=4+2i.

    We have z1*z2=12+6i-4i-2i²=14+2i

    Let's set the inverse by permuting the signs of b:

    z1=3+i and z2=4-2i.

    We have z1*z2=12-6i+4i-2i²=14-2i

    We notice that each time, we did:
    Z=(aa')-(bb)+i(ab'+a'b)
    and that it works.

    Question: Why does this formula become incorrect for complexes of the same sign
    in b?

    Example Z=(3+i)(4+2i) or Z=(3-i)(4-2i)

    The formula given by mathematicians is incorrect.
    I am not saying that it does not give a result.
    I am saying that it is incorrect.

    You are "saying". Only saying. No argument for your claim. So it has
    strictly NO content.

    BTW, the result is correct in C, by the way C is defined. And it makes a
    lot of sense. And it can be *shown*.

    Another formula could make sense too, in R(j) or R(epsilon) for instance.

    But switching from a formula to another one depending of the sign of the imaginary part will lead to an inconsistent structure (i.e. il will not be
    an associative algebra on R, so it will be useless). BTW there are only
    three of them, see: https://www.youtube.com/watch?v=r5mccK8mNw8

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Richard Hachel@21:1/5 to All on Mon Mar 3 22:17:47 2025
    Le 03/03/2025 à 22:47, Python a écrit :
    Le 03/03/2025 à 22:37, Richard Hachel a écrit :

    Z=(aa')-(bb')+i(ab'+a'b)

    Question: Why does this formula become incorrect for complexes of the same sign
    in b?

    Example Z=(3+i)(4+2i) or Z=(3-i)(4-2i)

    The formula given by mathematicians is incorrect.
    I am not saying that it does not give a result.
    I am saying that it is incorrect.

    You are "saying". Only saying. No argument for your claim. So it has strictly NO
    content.

    Well.

    Z=(3+i)(4+2i)

    Z=12+4i+6i+2i²
    Z=12+10i+2i²=10+10i ? ? ?

    Z=(aa')-(bb')+i(ab'+a'b)
    Z=(12)-(2)+i(6+4)
    Z= 10+10i ? ? ? ?

    Cela n'est plus cohérent avec la logique mathématique alors que ça le restait avec les produits à signe inversés.

    Z=(3-i)(4-2i)
    Z=12-6i-4i+2i²
    Z=10-10i ? ? ?

    Z=(aa')-(bb')+i(ab'+a'b)
    Z=(12)-(2)+i(-6-4)
    Z= 10-10i ? ? ? ?

    Là encore, les résultats ne sont pas cohérents avec la logique des
    produits mathématiques.

    La formule correcte est ici (si les signes sont de même nature) :
    Z=(aa')+(bb')+i(ab'+a'b)

    Il y a donc un problème sur le calcul de la partie réelle.

    Maintenant, une question se pose : pourquoi dans ces deux cas là,
    i²bb'=1bb' ce qui n'est pas logique.

    D'où vient le problème de signe?

    Si par exemple, tu places tes deux nombres complexes sur un repère quadrillé, tu vas t'apercevoir que la
    formule que j'ai donnée ne marche plus pour les complexes de signe
    opposé, mais marche pour les complexes
    de même signe (négatifs ou positifs).

    Et inversement pour la formule des mathématiciens qui marche pour les complexes de signes opposés, mais pas pour ceux de même signe.

    Qu'est ce qu'il se passe?

    R.H.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Python@21:1/5 to All on Mon Mar 3 22:24:13 2025
    XPost: fr.sci.maths

    Le 03/03/2025 à 23:17, Richard Hachel a écrit :
    Le 03/03/2025 à 22:47, Python a écrit :
    Le 03/03/2025 à 22:37, Richard Hachel a écrit :

    Z=(aa')-(bb')+i(ab'+a'b)

    Question: Why does this formula become incorrect for complexes of the same sign
    in b?

    Example Z=(3+i)(4+2i) or Z=(3-i)(4-2i)

    The formula given by mathematicians is incorrect.
    I am not saying that it does not give a result.
    I am saying that it is incorrect.

    You are "saying". Only saying. No argument for your claim. So it has strictly NO
    content.

    Well.

    Z=(3+i)(4+2i)

    Z=12+4i+6i+2i²
    Z=12+10i+2i²=10+10i ? ? ?

    Z=(aa')-(bb')+i(ab'+a'b)
    Z=(12)-(2)+i(6+4)
    Z= 10+10i ? ? ? ?

    Cela n'est plus cohérent avec la logique mathématique

    En quoi ? Why ?

    Z=(3-i)(4-2i)
    Z=12-6i-4i+2i²
    Z=10-10i ? ? ?

    Z=(aa')-(bb')+i(ab'+a'b)
    Z=(12)-(2)+i(-6-4)
    Z= 10-10i ? ? ? ?

    Là encore, les résultats ne sont pas cohérents avec la logique des produits
    mathématiques.

    En quoi ? Why ?


    Qu'est ce qu'il se passe?

    You are confronted with the inconsistance of your "system". Complex, and
    duals, and perplex numbers are going perfectly fine.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Richard Hachel@21:1/5 to All on Mon Mar 3 22:54:09 2025
    XPost: fr.sci.maths

    Le 03/03/2025 à 23:24, Python a écrit :
    Le 03/03/2025 à 23:17, Richard Hachel a écrit :
    Le 03/03/2025 à 22:47, Python a écrit :
    Le 03/03/2025 à 22:37, Richard Hachel a écrit :

    Z=(aa')-(bb')+i(ab'+a'b)

    Question: Why does this formula become incorrect for complexes of the same sign
    in b?

    Example Z=(3+i)(4+2i) or Z=(3-i)(4-2i)

    The formula given by mathematicians is incorrect.
    I am not saying that it does not give a result.
    I am saying that it is incorrect.

    You are "saying". Only saying. No argument for your claim. So it has strictly NO
    content.

    Well.

    Z=(3+i)(4+2i)

    Z=12+4i+6i+2i²
    Z=12+10i+2i²=10+10i ? ? ?

    Z=(aa')-(bb')+i(ab'+a'b)
    Z=(12)-(2)+i(6+4)
    Z= 10+10i ? ? ? ?

    Cela n'est plus cohérent avec la logique mathématique

    En quoi ? Why ?

    Z=(3-i)(4-2i)
    Z=12-6i-4i+2i²
    Z=10-10i ? ? ?

    Z=(aa')-(bb')+i(ab'+a'b)
    Z=(12)-(2)+i(-6-4)
    Z= 10-10i ? ? ? ?

    Là encore, les résultats ne sont pas cohérents avec la logique des produits
    mathématiques.

    En quoi ? Why ?


    Qu'est ce qu'il se passe?

    You are confronted with the inconsistance of your "system". Complex, and duals,
    and perplex numbers are going perfectly fine.

    Il faut garder l'axe des ordonnées tel qu'il est.

    C'est mathématiquement très simple, et facile à comprendre.

    Tu prends un repère cartésien, Oxy, et tu définis tes ordonnées y sur
    l'axe ascendant, et tu ne touches plus à RIEN.

    Ton axe i'Oi tu le confonds avec ton axe x'Ox mais en le plaçant en sens inverse.

    Ainsi, c'est toujours très simple, ton point A(4,0) est le même que ton point A(-4i,0), ton point B(-2,0) est le même que ton point B(2i,0) mais écrit différemment.

    Tout point Z=a+ib se trouve forcément sur x'Ox. Par exemple le point C(4+9i,O) se trouve tout simplement en C(-5,0) dans le repère cartésien.

    Niveau classe quatrième pour des enfants éveillés.

    On fait les additions de complexes très facilement sur x'Ox selon la
    méthode habituelle.

    Maintenant... Maintenant, plus difficile, nous allons multiplier les
    nombres complexes.

    Il est évident que nous ne pouvons pas le faire sur un simple plan cartésien, car y, c'est y, et x est déjà alloué pour les i.

    Il faut alors utiliser un nouvel axe (axe z'Oz) en profondeur, sur
    lequel, comme pour x'Ox, je vais placer mes complexes, et de la même
    façon inversée.

    Je vais alors multiplier mes complexes sur ce nouveau plan, et je vais
    obtenir des "surfaces".

    On remarque alors que Z=(aa')-(bb')+i(ab'+a'b), ça marche très bien
    pour les complexes de signe opposés,
    mais que pour les complexes de même signe, c'est Z=(aa')+(bb')-i(ab'+a'b)
    qui marche.

    Je pense qu'il y a un problème avec les signes du côté des
    mathématiciens (qui ne considèrent pas que i
    est l'antithèse de 1, et que son axe se trouve en contre-sens), et pas perpendiculairement du moins dans les problème de géométrie analytique.


    Par contre, les retraits ou les ajouts de i se font effectivement
    toujours perpendiculairement à y.

    Et c'est peut-être là qu'intervient le repère d'Argand-Gauss
    traditionnel.

    R.H.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Python@21:1/5 to All on Mon Mar 3 22:58:50 2025
    XPost: fr.sci.maths

    Le 03/03/2025 à 23:54, Richard Hachel a écrit :
    Le 03/03/2025 à 23:24, Python a écrit :
    Le 03/03/2025 à 23:17, Richard Hachel a écrit :
    Le 03/03/2025 à 22:47, Python a écrit :
    Le 03/03/2025 à 22:37, Richard Hachel a écrit :

    Z=(aa')-(bb')+i(ab'+a'b)

    Question: Why does this formula become incorrect for complexes of the same sign
    in b?

    Example Z=(3+i)(4+2i) or Z=(3-i)(4-2i)

    The formula given by mathematicians is incorrect.
    I am not saying that it does not give a result.
    I am saying that it is incorrect.

    You are "saying". Only saying. No argument for your claim. So it has strictly NO
    content.

    Well.

    Z=(3+i)(4+2i)

    Z=12+4i+6i+2i²
    Z=12+10i+2i²=10+10i ? ? ?

    Z=(aa')-(bb')+i(ab'+a'b)
    Z=(12)-(2)+i(6+4)
    Z= 10+10i ? ? ? ?

    Cela n'est plus cohérent avec la logique mathématique

    En quoi ? Why ?

    Z=(3-i)(4-2i)
    Z=12-6i-4i+2i²
    Z=10-10i ? ? ?

    Z=(aa')-(bb')+i(ab'+a'b)
    Z=(12)-(2)+i(-6-4)
    Z= 10-10i ? ? ? ?

    Là encore, les résultats ne sont pas cohérents avec la logique des produits
    mathématiques.

    En quoi ? Why ?


    Tu n'as pas répondu à ma question : en quoi « les résultats ne sont
    pas cohérents avec la logique des produits mathématique ».


    [snip délire]

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Richard Hachel@21:1/5 to All on Mon Mar 3 23:00:06 2025
    XPost: fr.sci.maths

    Le 03/03/2025 à 23:52, "Chris M. Thomasson" a écrit :
    On 3/3/2025 2:24 PM, Python wrote:
    Le 03/03/2025 à 23:17, Richard Hachel a écrit :
    Le 03/03/2025 à 22:47, Python a écrit :
    Le 03/03/2025 à 22:37, Richard Hachel a écrit :

    Z=(aa')-(bb')+i(ab'+a'b)

    Question: Why does this formula become incorrect for complexes of
    the same sign in b?

    Example Z=(3+i)(4+2i) or Z=(3-i)(4-2i)

    The formula given by mathematicians is incorrect.
    I am not saying that it does not give a result.
    I am saying that it is incorrect.

    You are "saying". Only saying. No argument for your claim. So it has
    strictly NO content.

     Well.

     Z=(3+i)(4+2i)

     Z=12+4i+6i+2i²
     Z=12+10i+2i²=10+10i  ? ? ?

     Z=(aa')-(bb')+i(ab'+a'b)
     Z=(12)-(2)+i(6+4)
     Z= 10+10i           ? ? ? ?
     Cela n'est plus cohérent avec la logique mathématique

    En quoi ? Why ?

     Z=(3-i)(4-2i)
     Z=12-6i-4i+2i²
     Z=10-10i        ? ? ?

     Z=(aa')-(bb')+i(ab'+a'b)
     Z=(12)-(2)+i(-6-4)
     Z= 10-10i           ? ? ? ?
     Là encore, les résultats ne sont pas cohérents avec la logique des
    produits mathématiques.

    En quoi ? Why ?


     Qu'est ce qu'il se passe?

    You are confronted with the inconsistance of your "system". Complex, and
    duals, and perplex numbers are going perfectly fine.



    One of my friends, David Makin, is/was working on so-called multiplex,
    or multex numbers. It's been a while since I talked to him. Btw, he programmed the game Crystal Dragons way back on the Amiga:

    https://youtu.be/zxfirQwl-Jw

    I need to try to find his old writings on it.
    I spent hours on Amiga.
    I even made a lot of plug-ins on some games... (X-It, Pacman Deluxe, Dune II).... I still have some...

    R.H.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Richard Hachel@21:1/5 to All on Mon Mar 3 23:10:49 2025
    Le 03/03/2025 à 23:38, "Chris M. Thomasson" a écrit :
    On 3/3/2025 1:37 PM, Richard Hachel wrote:
    Complex numbers and products of different complex signs.

    What is a complex number?

    It is initially an imaginary number which is a duality.

    The two real roots of a quadratic curve, for example, are a duality.

    If we find as a root x'=2 and x"=4 we can include these two roots in a
    single expression: Z=3(+/-)i.

    Z is this dual number which will split into x'=3+i and x"=3-i.

    As in Hachel i^x=-1 whatever x, we have: x'=2 and x"=4.

    Be careful with the signs (i=-1). If we add i, we subtract 1.

    If we subtract 5i, we add 5.

    But let's go further.
    A small problem arises in the products of complexes.

    Certainly, if we take complexes of inverse spacings, that is to say
    (+ib) for one and (-ib) for the other, everything will go very well.

    Let's set z1=3-i and z2=4+2i.

    We have z1*z2=12+6i-4i-2i²=14+2i

    Let's set the inverse by permuting the signs of b:

    z1=3+i and z2=4-2i.

    We have z1*z2=12-6i+4i-2i²=14-2i

    We notice that each time, we did:
    Z=(aa')-(bb)+i(ab'+a'b)
    and that it works.

    Question: Why does this formula become incorrect for complexes of the
    same sign in b?

    Example Z=(3+i)(4+2i) or Z=(3-i)(4-2i)

    The formula given by mathematicians is incorrect.
    I am not saying that it does not give a result.
    I am saying that it is incorrect.

    Where would you plot say, 1+.5i on the plane? I would say at 2-ary point
    (1, .5), right where x = 1 and y = .5. Say draw a little filled circle
    at said coordinates in the 2-ary plane where:

    (+y)
    ^
    |
    |
    |
    (-x)<---0--->(+x)
    |
    |
    |
    v
    (-y)

    <http://nemoweb.net/jntp?myUYryqxSTftKUa3owdcVRxGpRA@jntp/Data.Media:1>

    R.H.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Python@21:1/5 to All on Mon Mar 3 23:32:59 2025
    Le 04/03/2025 à 00:16, "Chris M. Thomasson" a écrit :
    On 3/3/2025 3:10 PM, Richard Hachel wrote:
    Le 03/03/2025 à 23:38, "Chris M. Thomasson" a écrit :
    On 3/3/2025 1:37 PM, Richard Hachel wrote:
    Complex numbers and products of different complex signs.

    What is a complex number?

    It is initially an imaginary number which is a duality.

    The two real roots of a quadratic curve, for example, are a duality.

    If we find as a root x'=2 and x"=4 we can include these two roots in
    a single expression: Z=3(+/-)i.

    Z is this dual number which will split into x'=3+i and x"=3-i.

    As in Hachel i^x=-1 whatever x, we have: x'=2 and x"=4.

    Be careful with the signs (i=-1). If we add i, we subtract 1.

    If we subtract 5i, we add 5.

    But let's go further.
    A small problem arises in the products of complexes.

    Certainly, if we take complexes of inverse spacings, that is to say
    (+ib) for one and (-ib) for the other, everything will go very well.

    Let's set z1=3-i and z2=4+2i.

    We have z1*z2=12+6i-4i-2i²=14+2i

    Let's set the inverse by permuting the signs of b:

    z1=3+i and z2=4-2i.

    We have z1*z2=12-6i+4i-2i²=14-2i

    We notice that each time, we did:
    Z=(aa')-(bb)+i(ab'+a'b)
    and that it works.

    Question: Why does this formula become incorrect for complexes of the
    same sign in b?

    Example Z=(3+i)(4+2i) or Z=(3-i)(4-2i)

    The formula given by mathematicians is incorrect.
    I am not saying that it does not give a result.
    I am saying that it is incorrect.

    Where would you plot say, 1+.5i on the plane? I would say at 2-ary
    point (1, .5), right where x = 1 and y = .5. Say draw a little filled
    circle at said coordinates in the 2-ary plane where:

           (+y)
             ^
             |
             |
             |
    (-x)<---0--->(+x)
             |
             |
             |
             v
           (-y)

    <http://nemoweb.net/jntp?myUYryqxSTftKUa3owdcVRxGpRA@jntp/Data.Media:1>

    R.H.

    So, you try to embed it all in the real line? So, why even have your y
    axis showing in your graphic? Show me a single point, color it yellow,
    on your real line that shows the plotted point 1+.5i.

    Don't try to make sense of Hachel's asinine products. There is none.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Richard Hachel@21:1/5 to All on Mon Mar 3 23:58:39 2025
    Le 04/03/2025 à 00:16, "Chris M. Thomasson" a écrit :
    On 3/3/2025 3:10 PM, Richard Hachel wrote:
    Le 03/03/2025 à 23:38, "Chris M. Thomasson" a écrit :
    On 3/3/2025 1:37 PM, Richard Hachel wrote:
    Complex numbers and products of different complex signs.

    What is a complex number?

    It is initially an imaginary number which is a duality.

    The two real roots of a quadratic curve, for example, are a duality.

    If we find as a root x'=2 and x"=4 we can include these two roots in
    a single expression: Z=3(+/-)i.

    Z is this dual number which will split into x'=3+i and x"=3-i.

    As in Hachel i^x=-1 whatever x, we have: x'=2 and x"=4.

    Be careful with the signs (i=-1). If we add i, we subtract 1.

    If we subtract 5i, we add 5.

    But let's go further.
    A small problem arises in the products of complexes.

    Certainly, if we take complexes of inverse spacings, that is to say
    (+ib) for one and (-ib) for the other, everything will go very well.

    Let's set z1=3-i and z2=4+2i.

    We have z1*z2=12+6i-4i-2i²=14+2i

    Let's set the inverse by permuting the signs of b:

    z1=3+i and z2=4-2i.

    We have z1*z2=12-6i+4i-2i²=14-2i

    We notice that each time, we did:
    Z=(aa')-(bb)+i(ab'+a'b)
    and that it works.

    Question: Why does this formula become incorrect for complexes of the
    same sign in b?

    Example Z=(3+i)(4+2i) or Z=(3-i)(4-2i)

    The formula given by mathematicians is incorrect.
    I am not saying that it does not give a result.
    I am saying that it is incorrect.

    Where would you plot say, 1+.5i on the plane? I would say at 2-ary
    point (1, .5), right where x = 1 and y = .5. Say draw a little filled
    circle at said coordinates in the 2-ary plane where:

           (+y)
             ^
             |
             |
             |
    (-x)<---0--->(+x)
             |
             |
             |
             v
           (-y)

    <http://nemoweb.net/jntp?myUYryqxSTftKUa3owdcVRxGpRA@jntp/Data.Media:1>

    R.H.

    So, you try to embed it all in the real line? So, why even have your y
    axis showing in your graphic? Show me a single point, color it yellow,
    on your real line that shows the plotted point 1+.5i.

    Point 1+5i is A(-4,0).

    R.H.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Richard Hachel@21:1/5 to All on Tue Mar 4 00:00:52 2025
    Le 04/03/2025 à 00:32, Python a écrit :
    Le 04/03/2025 à 00:16, "Chris M. Thomasson" a écrit :
    On 3/3/2025 3:10 PM, Richard Hachel wrote:
    Le 03/03/2025 à 23:38, "Chris M. Thomasson" a écrit :
    On 3/3/2025 1:37 PM, Richard Hachel wrote:
    Complex numbers and products of different complex signs.

    What is a complex number?

    It is initially an imaginary number which is a duality.

    The two real roots of a quadratic curve, for example, are a duality. >>>>>
    If we find as a root x'=2 and x"=4 we can include these two roots in >>>>> a single expression: Z=3(+/-)i.

    Z is this dual number which will split into x'=3+i and x"=3-i.

    As in Hachel i^x=-1 whatever x, we have: x'=2 and x"=4.

    Be careful with the signs (i=-1). If we add i, we subtract 1.

    If we subtract 5i, we add 5.

    But let's go further.
    A small problem arises in the products of complexes.

    Certainly, if we take complexes of inverse spacings, that is to say
    (+ib) for one and (-ib) for the other, everything will go very well. >>>>>
    Let's set z1=3-i and z2=4+2i.

    We have z1*z2=12+6i-4i-2i²=14+2i

    Let's set the inverse by permuting the signs of b:

    z1=3+i and z2=4-2i.

    We have z1*z2=12-6i+4i-2i²=14-2i

    We notice that each time, we did:
    Z=(aa')-(bb)+i(ab'+a'b)
    and that it works.

    Question: Why does this formula become incorrect for complexes of the >>>>> same sign in b?

    Example Z=(3+i)(4+2i) or Z=(3-i)(4-2i)

    The formula given by mathematicians is incorrect.
    I am not saying that it does not give a result.
    I am saying that it is incorrect.

    Where would you plot say, 1+.5i on the plane? I would say at 2-ary
    point (1, .5), right where x = 1 and y = .5. Say draw a little filled
    circle at said coordinates in the 2-ary plane where:

           (+y)
             ^
             |
             |
             |
    (-x)<---0--->(+x)
             |
             |
             |
             v
           (-y)

    <http://nemoweb.net/jntp?myUYryqxSTftKUa3owdcVRxGpRA@jntp/Data.Media:1>

    R.H.

    So, you try to embed it all in the real line? So, why even have your y
    axis showing in your graphic? Show me a single point, color it yellow,
    on your real line that shows the plotted point 1+.5i.

    Don't try to make sense of Hachel's asinine products. There is none.

    Merci de bien vouloir laisser les gens disposer d'eux mêmes.

    R.H.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Richard Hachel@21:1/5 to All on Thu Mar 6 21:05:55 2025
    Le 06/03/2025 à 21:52, "Chris M. Thomasson" a écrit :
    On 3/3/2025 4:23 PM, Chris M. Thomasson wrote:
    On 3/3/2025 3:58 PM, Richard Hachel wrote:
    Le 04/03/2025 à 00:16, "Chris M. Thomasson" a écrit :
    [...]
    Where would you plot say, 1+.5i on the plane? I would say at 2-ary >>>>>> point (1, .5), right where x = 1 and y = .5. Say draw a little
    filled circle at said coordinates in the 2-ary plane where:

           (+y)
             ^
             |
             |
             |
    (-x)<---0--->(+x)
             |
             |
             |
             v
           (-y)

    <http://nemoweb.net/jntp?myUYryqxSTftKUa3owdcVRxGpRA@jntp/Data.Media:1> >>>>>
    R.H.

    So, you try to embed it all in the real line? So, why even have your
    y axis showing in your graphic? Show me a single point, color it
    yellow, on your real line that shows the plotted point 1+.5i.

    Point 1+5i is A(-4,0).
    R.H.

    I said 1+.5i. Where is that?



    Any answer?

    I don't understand your answer.
    What is 1+.5i. ?

    R.H.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Richard Hachel@21:1/5 to All on Thu Mar 6 23:08:11 2025
    Le 06/03/2025 à 23:31, "Chris M. Thomasson" a écrit :

    You have used graph paper and a ruler before, right?

    Yes, a hundred years ago...
    Otherwise, I don't consider complex numbers in the same way as
    mathematicians. I use them in a much, much simpler way, which is a problem
    for them because they are so tangled up in their difficulties that they
    don't understand anything at all when I try to teach them.
    The current scientific problem is very particular, in the sense that
    everything has become so complicated that we don't even understand simple things anymore.

    R.H.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)