How can mathematicians come up with such absurdities?
https://www.youtube.com/watch?v=XZriBHTNPw0
Le 02/04/2025 à 14:49, efji a écrit :
Le 02/04/2025 à 14:32, Richard Hachel a écrit :
How can mathematicians come up with such absurdities?
https://www.youtube.com/watch?v=XZriBHTNPw0
No mathematician would write \sqrt{i} because the symbol "\sqrt"
designs the positive square root of a real number, which does not make
sense in \C since it is not an ordered set and the word "positive" is
a nonsense in \C.
Anyway, "i" has 2 square roots : ±(1+i)/\sqrt{2}
and "-i" too : ±(1-i)/\sqrt{2}
Thus, the mathematically wrong expression "\sqrt{i}+\sqrt{-i}" is non
univoque and could be any of these 4 values :
±\sqrt{2}, ±i\sqrt{2}
You're welcome
Four possible values?
To think that Python gave us a nervous breakdown when I explained that a function could have multiple roots, which was actually true.
But here, we're falling into the opposite madness.
We add two numbers, and we find four answers, which is stupid, to say
the least.
No, no, the correct answer is simply √i+√(-i)=0.
Le 02/04/2025 à 14:49, efji a écrit :
Le 02/04/2025 à 14:32, Richard Hachel a écrit :
How can mathematicians come up with such absurdities?
https://www.youtube.com/watch?v=XZriBHTNPw0
No mathematician would write \sqrt{i} because the symbol "\sqrt"
designs the positive square root of a real number, which does not make
sense in \C since it is not an ordered set and the word "positive" is
a nonsense in \C.
Not really, see https://en.wikipedia.org/wiki/Principal_value#Square_root
Le 02/04/2025 à 15:05, Richard Hachel a écrit :
Le 02/04/2025 à 14:49, efji a écrit :
Le 02/04/2025 à 14:32, Richard Hachel a écrit :
How can mathematicians come up with such absurdities?
https://www.youtube.com/watch?v=XZriBHTNPw0
No mathematician would write \sqrt{i} because the symbol "\sqrt"
designs the positive square root of a real number, which does not
make sense in \C since it is not an ordered set and the word
"positive" is a nonsense in \C.
Anyway, "i" has 2 square roots : ±(1+i)/\sqrt{2}
and "-i" too : ±(1-i)/\sqrt{2}
Thus, the mathematically wrong expression "\sqrt{i}+\sqrt{-i}" is non
univoque and could be any of these 4 values :
±\sqrt{2}, ±i\sqrt{2}
You're welcome
Four possible values?
To think that Python gave us a nervous breakdown when I explained that
a function could have multiple roots, which was actually true.
But here, we're falling into the opposite madness.
We add two numbers, and we find four answers, which is stupid, to say
the least.
We don't add two numbers since \sqrt{i} is not a number because this
notation is a nonsense ! Can you read carefully what I wrote ???
Op 02/04/2025 om 15:14 schreef efji:
We don't add two numbers since \sqrt{i} is not a number because this
notation is a nonsense ! Can you read carefully what I wrote ???
It seems to work just fine in wolfram alpha (desmos in complex mode
gives the same answer).
https://www.wolframalpha.com/input?i=sqrt%28i%29
https://www.desmos.com/calculator/ztfet88jmu
On 4/2/2025 5:49 AM, efji wrote:
Le 02/04/2025 à 14:32, Richard Hachel a écrit :
How can mathematicians come up with such absurdities?
https://www.youtube.com/watch?v=XZriBHTNPw0
No mathematician would write \sqrt{i} because the symbol "\sqrt"
designs the positive square root of a real number, which does not make
sense in \C since it is not an ordered set and the word "positive" is
a nonsense in \C.
Anyway, "i" has 2 square roots : ±(1+i)/\sqrt{2}
and "-i" too : ±(1-i)/\sqrt{2}
Thus, the mathematically wrong expression "\sqrt{i}+\sqrt{-i}" is non
univoque and could be any of these 4 values :
±\sqrt{2}, ±i\sqrt{2}
You're welcome
sqrt(0+1i) has two roots:
[0] = sqrt(0+1i)
[1] = -sqrt(0+1i)
any of them raised to the the 2'nd power equals 0+1i.
Le 02/04/2025 à 14:32, Richard Hachel a écrit :
How can mathematicians come up with such absurdities?
https://www.youtube.com/watch?v=XZriBHTNPw0
Il n'y a rien d'absurde. Le raisonnement est un peu rapide, certes, à un moment (à 8mn 15s) quand il dit "it is obvious that you can factorize by
+/- 1/sqrt(2)" en réalité en faisant cela l'auteur de la vidéo fait en sorte que c'est la même branche de la fonction sqrt qui est prise en
compte pour les deux racines, et du coup le résultat final est correct
(il y a deux valeurs possibles).
Le maniement de fonction telles que sqrt est délicat dans C, et même
dans R ! 4 a déjà deux "racines" 2 et -2 ! On sélectionne la valeur positive dans R comme "valeur principale" tandis que dans C le critère
est d'avoir l'argument dans ]-pi, pi]
voir : https://fr.wikipedia.org/wiki/ D%C3%A9termination_d%27une_fonction_multivalu%C3%A9e#Racine_carr%C3%A9e_complexe
https://en.wikipedia.org/wiki/Principal_value#Square_root
C'est pour cela que dans le cas des nombres complexes on évite
d'utiliser sqrt comme une fonction mono-valuée et on parle de racines
(au pluriel) n-èmes et on sait qu'il y en a toujours exactement n.
wow, the dumb Hachel has got a dumb cousin :)
Sysop: | Keyop |
---|---|
Location: | Huddersfield, West Yorkshire, UK |
Users: | 546 |
Nodes: | 16 (2 / 14) |
Uptime: | 24:38:59 |
Calls: | 10,390 |
Calls today: | 1 |
Files: | 14,064 |
Messages: | 6,417,013 |