What is the value of i^i?
R.H.
Richard Hachel wrote:
What is the value of i^i?
R.H.
e(ln(i^i)) = e(i*ln(i)) = e(i*i*pi/2) = e(-pi/2) = 0.207879576351
Le 11/05/2025 à 16:04, Jody Holomeev a écrit :
Richard Hachel wrote:
What is the value of i^i?
R.H.
e(ln(i^i)) = e(i*ln(i)) = e(i*i*pi/2) = e(-pi/2) = 0.207879576351
C'est ridicule. On fait dire à "i" n'importe quoi. R.H.
Le 11/05/2025 à 16:04, Jody Holomeev a écrit :
Richard Hachel wrote:
What is the value of i^i?
R.H.
e(ln(i^i)) = e(i*ln(i)) = e(i*i*pi/2) = e(-pi/2) = 0.207879576351
C'est ridicule.
On fait dire à "i" n'importe quoi.
R.H.
lol, then you guys still trust the jew, poisoning the food and water, seee(ln(i^i)) = e(i*ln(i)) = e(i*i*pi/2) = e(-pi/2) = 0.207879576351
C'est ridicule.
On fait dire à "i" n'importe quoi.
R.H.
It is not ridiculous. I provided you some hints on fr.sci.maths that you ignored.
Sysop: | Keyop |
---|---|
Location: | Huddersfield, West Yorkshire, UK |
Users: | 493 |
Nodes: | 16 (2 / 14) |
Uptime: | 191:20:19 |
Calls: | 9,707 |
Calls today: | 2 |
Files: | 13,740 |
Messages: | 6,180,052 |