[this <sci.math.symbolic> response to a <fricas-devel> message tests
cross-posting to <fricas-devel> as well.]
"Ralf Hemmecke" schrieb:
[...]
Derive 6.10 also returns nice roots and nice factorizations:
SOLUTIONS(x^4-2729960418308000*x^3-395258439243352250000*x^2-55499520947716391500000000*x-345363656226658026765625000000,
x)
[5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) + 482593381088000*SQRT(2) + 682490104577000,
- 5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) + 482593381088000*SQRT(2) + 682490104577000,
- 482593381088000*SQRT(2) + 682490104577000 + 5892250*#i*SQRT(18973409738301178*SQRT(2) - 26832453376367282),
- 482593381088000*SQRT(2) + 682490104577000 - 5892250*#i*SQRT(18973409738301178*SQRT(2) - 26832453376367282)]
FACTOR(x^4-2729960418308000*x^3-395258439243352250000*x^2-55499520947716391500000000*x-345363656226658026765625000000,
Radical, x)
(x + 5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) - 482593381088000*SQRT(2) - 682490104577000)*
(x - 5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) - 482593381088000*SQRT(2) - 682490104577000)*
(x^2 + x*(965186762176000*SQRT(2) - 1364980209154000) + 6284502086851625000*SQRT(2) - 8887628064558125000)
FACTOR(x^4-2729960418308000*x^3-395258439243352250000*x^2-55499520947716391500000000*x-345363656226658026765625000000,
Complex)
(x + 5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) - 482593381088000*SQRT(2) - 682490104577000)*
(x - 5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) - 482593381088000*SQRT(2) - 682490104577000)*
(x + 482593381088000*SQRT(2) - 682490104577000 + 5892250*#i*SQRT(18973409738301178*SQRT(2) - 26832453376367282))*
(x + 482593381088000*SQRT(2) - 682490104577000 - 5892250*#i*SQRT(18973409738301178*SQRT(2) - 26832453376367282))
The weakness of FriCAS in determining the roots of degree-four
polynomials like this in terms of radicals has also been pointed out
for the simpler example of
radicalSolve(64*z^4 + 64*z^3 + 32*z^2 - 8*z + 1)
in the recent <sci.math.symbolic> thread "radicalSolve() in FriCAS is pathetic", which has been archived at <sci.math.symbolic.narkive.com/2ai15DJT/>.
Related results of the algebraic integrator were improved in the latest version 3.1.10 of FriCAS, but the solutions returned by radicalSolve() involve unnecessary cube roots as before. The December post in <sci.math.symbolic> thread provides the formulae needed to avoid the
cube roots.
Hello ...
We're writing to let you know that the group you tried to contact (fricas-devel) may not exist, or you may not have permission to post
messages to the group. A few more details on why you weren't able to
post:
* You might have spelled or formatted the group name incorrectly.
* The owner of the group may have removed this group.
* You may need to join the group before receiving permission to post.
* This group may not be open to posting.
If you have questions related to this or any other Google Group,
visit the Help Center at https://groups.google.com/support/.
Thanks,
Google Groups
Admittedly, it might be difficult to extract the imaginary part of a172989501261663064201623395407144143954141328843750000000000000, 3)^2+(-676159865925870354666914169665824080551250000*sqrt(3)+8217402890479177097807248979603419220411058375726750000)*nthRoot(137198597903998437385921091448494025437519087343750000000000000*
radical expression. But that seems to look like a bug.
%%% (412) -> xx := (sqrt((((-12669586846893008563685878644359325*sqrt(3)+15974693204716576905254784724655502)*nthRoot(137198597903998437385921091448494025437519087343750000000000000*sqrt(3)+
Type: AlgebraicNumber
%%% (413) -> ee := xx::Expression(INT);
Type: Expression(Integer)
%%% (414) -> imag(ee) $ TrigonometricManipulations(ZZ, EX(ZZ))
(414) 0
Type: Expression(Integer)
%%% (415) -> imag ee
(415) 0
Type: Expression(Integer)
%%% (416) -> ee::Complex(Float)
(416) - 69137.1165280576_4221 + 123509.3125610854_8141 %i
Type: Complex(Float)
In fact, the value xx is one of radicalRoots(pp) where
pp := x^4-2729960418308000*x^3-395258439243352250000*x^2-55499520947716391500000000*x-345363656226658026765625000000
Interestingly, when I put xx into Mathematica, I get a much nicer expressions.
In[15]:= p1 = Root[pp, 1] // ToRadicals
Out[15]= 250 (2729960418308 + 1930373524352 Sqrt[2] -
23569 Sqrt[2 (13416226688183641 + 9486704869150589 Sqrt[2])])
In[25]:= p3 = Root[pp, 3] // ToRadicals
Out[25]= 250 (2729960418308 - 1930373524352 Sqrt[2] -
23569 I Sqrt[2 (-13416226688183641 + 9486704869150589 Sqrt[2])])
Can I somehow "convince" FriCAS to return similarly "simple" radical expresssions?
Thank you
Ralf
[this <sci.math.symbolic> response to a <fricas-devel> message tests
cross-posting to <fricas-devel> as well.]
"Ralf Hemmecke" schrieb:
[...]
Derive 6.10 also returns nice roots and nice factorizations:
SOLUTIONS(x^4-2729960418308000*x^3-395258439243352250000*x^2-55499520947716391500000000*x-345363656226658026765625000000,
x)
[5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) + 482593381088000*SQRT(2) + 682490104577000,
- 5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) + 482593381088000*SQRT(2) + 682490104577000,
- 482593381088000*SQRT(2) + 682490104577000 + 5892250*#i*SQRT(18973409738301178*SQRT(2) - 26832453376367282),
- 482593381088000*SQRT(2) + 682490104577000 - 5892250*#i*SQRT(18973409738301178*SQRT(2) - 26832453376367282)]
FACTOR(x^4-2729960418308000*x^3-395258439243352250000*x^2-55499520947716391500000000*x-345363656226658026765625000000,
Radical, x)
(x + 5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) - 482593381088000*SQRT(2) - 682490104577000)*
(x - 5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) - 482593381088000*SQRT(2) - 682490104577000)*
(x^2 + x*(965186762176000*SQRT(2) - 1364980209154000) + 6284502086851625000*SQRT(2) - 8887628064558125000)
FACTOR(x^4-2729960418308000*x^3-395258439243352250000*x^2-55499520947716391500000000*x-345363656226658026765625000000,
Complex)
(x + 5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) - 482593381088000*SQRT(2) - 682490104577000)*
(x - 5892250*SQRT(18973409738301178*SQRT(2) + 26832453376367282) - 482593381088000*SQRT(2) - 682490104577000)*
(x + 482593381088000*SQRT(2) - 682490104577000 + 5892250*#i*SQRT(18973409738301178*SQRT(2) - 26832453376367282))*
(x + 482593381088000*SQRT(2) - 682490104577000 - 5892250*#i*SQRT(18973409738301178*SQRT(2) - 26832453376367282))
The weakness of FriCAS in determining the roots of degree-four
polynomials like this in terms of radicals has also been pointed out
for the simpler example of
radicalSolve(64*z^4 + 64*z^3 + 32*z^2 - 8*z + 1)
in the recent <sci.math.symbolic> thread "radicalSolve() in FriCAS is pathetic", which has been archived at <sci.math.symbolic.narkive.com/2ai15DJT/>.
Related results of the algebraic integrator were improved in the latest version 3.1.10 of FriCAS, but the solutions returned by radicalSolve() involve unnecessary cube roots as before. The December post in <sci.math.symbolic> thread provides the formulae needed to avoid the
cube roots.
Sysop: | Keyop |
---|---|
Location: | Huddersfield, West Yorkshire, UK |
Users: | 491 |
Nodes: | 16 (3 / 13) |
Uptime: | 101:24:42 |
Calls: | 9,682 |
Calls today: | 3 |
Files: | 13,725 |
Messages: | 6,174,908 |